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Objectives Proposed System Loss Functions
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e GAN-Fusion: Overall adversarial loss:
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To tackle hate speech online, a system should:

text feature vector
(detects key words: you, smell, love, today)

e have intelligent agents for each modality working Input Image (combines information

from two modalities)

together and Figure: End-to-End pipeline of the proposed multi-agent system for hate speech classification. .
e ultimately recommend a human user what Conclusion & Future Work

actions to take in the real world

Important Result e We sketch a solution to the problem of hate

hattﬂgnug?;ﬂf;mﬂzzﬂffum e Introducing input from multiple modalities enhances the efficacy of hate speech detection. speech detection through a multi-agent system.
f/ o Cross-modal adversarial alignment (GAN-fusion) best models context in a multi-modal sample. * We demonstrate the effectiveness of adaptive
fusion techniques for coordinating text processing
and image processing.
Hate Results e The proposed system can be used by a human
N\ | user to moderate content online.
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