Adversarial Learning on the Latent Space for Diverse Dialog Generation

Objectives

Given a natural language query (with context):

- learn meaningful representation of text, and
- generate diverse, relevant, & fluent responses

Introduction

- A dialog generation system has two main tasks:
- encoding the context in a conversation, and
- generating a response based on the given context.

Figure: General pipeline. Q: Query, C: Context, R: Response

Approach

Proposed two-step approach for dialog-generation:

- Step 1: Train a VAE [1] to learn a real-valued vector representation of a generic sentence.
- Step 2: Train an adversarial network on the VAE's latent space \boldsymbol{z} for dialog generation.

Given a query-response pair (q, r) in the training set, we use the trained encoder from Step 1 to obtain query and response latent variables \boldsymbol{z}_q and \boldsymbol{z}_r respectively. The adversarial generator G then learns to match $\hat{\boldsymbol{z}}_r = G(\boldsymbol{z}_q)$ and \boldsymbol{z}_r . Here, the adversarial discriminator D classifies $(\boldsymbol{z}_r, \boldsymbol{z}_q)$ versus $(\hat{\boldsymbol{z}}_r, \boldsymbol{z}_q)$.

Kashif Khan*[†] , Gaurav Sahu*[†] , Vikash Balasubramanian*[†] , Lili Mou $^{\psi}$, Olga Vechtomova[†]

University of Waterloo; ψ University of Alberta, Alberta Machine Intelligence Institute (Amii)

Complete Architecture Diagram

(b) Step 2: Adversarial network (dashed box) (a) Step 1: Variational Autoencoder

Important Result

Adversarial learning with MSE loss improves **relevance**, **fluency**, and **diversity** of responses in dialog.

Results

Model	BLEU			Diversity						Fluency
	Avg	Max	HM	Intra-1	Intra-2	Inter-1	Inter-2	ASL (14.43)	TTR	PPL
Single-turn results										
Seq2Seq	0.143	0.217	0.172	0.99	0.99	0.46	0.49	4.63	0.019	18.45
WED-S	0.215	0.357	0.268	0.94	0.99	0.48	0.74	10.42	0.034	33.91
DialogWAE	0.296	0.356	0.323	0.85	0.97	0.42	0.74	19.34	0.005	20
VAE-M (ours)	0.191	0.293	0.231	0.98	0.99	0.5	0.79	9.36	0.029	19.7
VAE-A (ours)	0.295	0.359	0.323	0.93	0.99	0.46	0.76	13.64	0.035	21.38
VAE-AM (ours)	0.306	0.367	0.334	0.91	0.99	0.46	0.82	16.90	0.034	17.01
Multi-turn results										
HRED*	0.232	0.232	0.232	0.94	0.97	0.09	0.10	10.1	_	_
CVAE*	0.222	0.265	0.242	0.94	0.97	0.18	0.22	10.0	_	_
CVAE-CO*	0.244	0.259	0.251	0.82	0.91	0.11	0.13	11.2	_	_
VHCR*	0.266	0.289	0.277	0.85	0.97	0.42	0.74	16.9	_	_
DialogWAE	0.279	0.365	0.316	0.79	0.92	0.35	0.68	19.84	0.007	161.86
VAE-AM (ours)	0.314	0.371	0.340	0.847	0.98	0.41	0.73	15.3	0.036	119.39

Table: Dialog generation results on the de-duplicated DailyDialog dataset [2]

• **Step 1:** KL divergence loss for the VAE is given by (λ_{KL} balances the two terms): $J_{\text{AE}}(\boldsymbol{ heta}_{ ext{Enc}}, \boldsymbol{ heta}_{ ext{Dec}}) = - \mathbb{E}_{q_E(\boldsymbol{z}|s)}[\log p(s|\boldsymbol{z})] +$ (1) $\lambda_{\mathrm{KL}} \mathrm{KL}(q_E(\boldsymbol{z}|s)||p(\boldsymbol{z}))$ • Step 2: Overall loss for Step 2 is given as: $J = J_{\rm CGAN} + \gamma J_{\rm MSE}$ where, $J_{ ext{MSE}} = ||oldsymbol{z}_r - \hat{oldsymbol{z}}_r||^2$ $J_{\text{CGAN}} = \min_{G} \max_{D} \mathbb{E}_{(\boldsymbol{z}_q, \boldsymbol{z}_r) \sim \mathcal{D}_{\text{train}}} [\log D(\boldsymbol{z}_r, \boldsymbol{z}_q) + \log(1 - D(G(\boldsymbol{z}_q), \boldsymbol{z}_q))]$ (2)

• We propose an effective two-stage model for dialog generation

• We make use of sentence representations learned by a VAE and train a adversarial network on VAE's latent space to generate diverse responses given a query and context

• We observe that our model outperforms existing state-of-the-art approaches by generating more diverse, fluent, and relevant sentences.

[1] Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In *ICLR*, 2014. Vechtomova.

[2] Hareesh Bahuleyan, Lili Mou, Hao Zhou, and Olga Stochastic Wasserstein autoencoder for probabilistic sentence generation.

NSERC (Grant Nos. RGPIN-2019-04897 and RGPIN-2020-04465); Amii Fellow Program; Canadian CIFAR AI Chair Program; Compute Canada.

Loss Functions

Conclusion

References

In NAACL-HLT, Volume 1, pages 4068–4076, 2019.

Acknowledgements