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Objectives

Given inputs from different modalities (e.g.
visuals, text, speech), we want to learn a
meaningful joint representation to gain a better
contextual understanding.

Introduction

A fusion mechanism has two main tasks:
• combining input from different modalities, and
• identifying important information, while filtering
out the less useful signals from the input.

Figure: Fusion process: fusion module combines latent codes
from three modalities and outputs a fused vector.

Approach

Proposed two end-to-end trainable fusion methods:
•Auto-Fusion: Train an autoencoder model to
capture intermodal dynamics by maximizing
correlation between multimodal inputs.
•GAN-Fusion: Train adversarial networks to
align unimodal feature vectors with their
complementary modalities. This helps in
distinguishing between ambiguous inputs.

Given a multimodal sample with text, visual, and
speech input (xt, xv, xs), we first obtain their respec-
tive latent representations zt, zv, zs. In GAN-Fusion,
we learn aligned latent codes for every mode through
an adversarial network. Finally, we combine their
outputs to obtain a global fused vector zfuse.

Proposed Fusion Techniques

(a) Auto-Fusion (b) GAN-Fusion
Figure: Proposed fusion methods.

Important Result

Using an adaptive techniques instead of “fixed" methods for fusion improves contextual understanding.

Results

Model Source modalities BLEU 1 BLEU 2 BLEU 3 BLEU 4
Unimodal S2S t - - - 54.4
Multimodal S2S s-v-t - - - 54.4
BPE Multimodal s-v-t - - - 51.0

Unimodal SPM Transformer t - - - 55.5
Attention over Image Features s-v-t - - - 56.2

Seq2Seq (w/o attn)
t 48.32 30.63 20.79 14.60
s 20.11 7.01 3.12 1.57
v 19.28 6.35 2.33 1.03

Seq2Seq t 79.21 67.34 52.67 47.34

Auto-Fusion (Ours) s-t 80.34 67.83 61.27 55.01
s-v-t 85.23 71.95 69.54 57.80

GAN-Fusion (Ours) s-t 82.25 69.43 64.33 56.5
s-v-t 89.66 74.48 71.29 59.83

Table: Results for machine translation on How2 dataset. ‘t’, ‘s’, ‘v’ represent the text, speech, and video modalities, respectively.
Here, ‘attn’ refers to the word-level attention [1].

Loss Functions

•Auto-Fusion: The MSE loss is given by:
Jtr = || ẑk

m − zk
m ||2 (1)

•GAN-Fusion: Overall adversarial loss:
Jadv = J t

adv + Js
adv + Jv

adv where,

min
G

max
D

Jm
adv(D, G) = Ex∼pztr

(x)[logD(x)]
+ Ez∼pzm(z)[log(1−D(G(z)))] ∀ m ∈ {t, v, s}

(2)

Conclusion

•We propose two effective fusion strategies for
multimodal data
•We make use of adversarial alignment to get a
better contextual understanding of a multimodal
sample
•Despite being significantly smaller than
transformer-based baselines, our model achieves
state-of-the-art results.
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